Deep Transcriptome Sequencing of Wild Halophyte Rice, Porteresia coarctata, Provides Novel Insights into the Salinity and Submergence Tolerance Factors
نویسندگان
چکیده
Porteresia coarctata is a wild relative of rice with capability of high salinity and submergence tolerance. The transcriptome analyses of Porteresia can lead to the identification of candidate genes involved in salinity and submergence tolerance. We sequenced the transcriptome of Porteresia under different conditions using Illumina platform and generated about 375 million high-quality reads. After optimized assembly, a total of 152 367 unique transcript sequences with average length of 794 bp were obtained. Many of these sequences might represent fragmented transcripts. Functional annotation revealed the presence of genes involved in diverse cellular processes and 2749 transcription factor (TF)-encoding genes in Porteresia. The differential gene expression analyses identified a total of 15 158 genes involved in salinity and/or submergence response(s). The stress-responsive members of different TF families, including MYB, bHLH, AP2-EREBP, WRKY, bZIP and NAC, were identified. We also revealed key metabolic pathways, including amino acid biosynthesis, hormone biosynthesis, secondary metabolite biosynthesis, carbohydrate metabolism and cell wall structures, involved in stress tolerance in Porteresia. The transcriptome analyses of Porteresia are expected to highlight genes/pathways involved in salinity and submergence tolerance of this halophyte species. The data can serve as a resource for unravelling the underlying mechanism and devising strategies to engineer salinity and submergence tolerance in rice.
منابع مشابه
Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice
Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h)...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملComprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus
The turf grass Sporobolus virginicus is halophyte and has high salinity tolerance. To investigate the molecular basis of its remarkable tolerance, we performed Illumina high-throughput RNA sequencing on roots and shoots of a S. virginicus genotype under normal and saline conditions. The 130 million short reads were assembled into 444,242 unigenes. A comparative analysis of the transcriptome wit...
متن کاملTranscriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses.
Drought and salinity are the major environmental factors that affect rice productivity. Comparative transcriptome analysis between tolerant and sensitive rice cultivars can provide insights into the regulatory mechanisms involved in these stress responses. In this study, the comparison of transcriptomes of a drought-tolerant [Nagina 22 (N22)] and a salinity-tolerant (Pokkali) rice cultivar with...
متن کاملAn insight into the molecular basis of salt tolerance of L-myo-inositol 1-P synthase (PcINO1) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice.
The molecular basis of salt tolerance of L-myo-inositol 1-P synthase (MIPS; EC 5.5.1.4) from Porteresia coarctata (Roxb.) Tateoka (PcINO1, AF412340) earlier reported from this laboratory, has been analyzed by in vitro mutant and hybrid generation and subsequent biochemical and biophysical studies of the recombinant proteins. A 37-amino acid stretch between Trp-174 and Ser-210 has been confirmed...
متن کامل